LegacyCodeBench: Execution-Based Evaluation of Al
Comprehension for Legacy COBOL Systems

Nikita* and Thiyagarajan M*
Kalmantic Labs
{nikita, thiyagarajan}@kalmantic.com

January 2026

Abstract

We introduce LegacyCodeBench, a benchmark for evaluating whether Al systems can accurately
understand and document legacy COBOL code. Unlike existing benchmarks that test code generation
(HumanEval, SWE-bench), LegacyCodeBench tests code comprehension—a critical capability for the $2
trillion legacy modernization industry.

Our key methodological innovation is claim-based behavioral verification: instead of using LLM-
as-judge (non-reproducible) or LLM code regeneration (circular validation), we extract behavioral claims
from Al-generated documentation and verify them by executing the original program. This approach,
inspired by SWE-bench’s use of test suites as ground truth, provides objective verification while remaining
100% deterministic.

LegacyCodeBench comprises 200 real-world COBOL programs across 4 complexity tiers, evaluated
on three tracks: Structural Completeness (30%), Documentation Quality (20%), and Behavioral Fidelity
(50%). We introduce anti-gaming mechanisms including the Silence Penalty (penalizing vague documen-
tation) and Critical Failure detection (hard stops for dangerous errors like hallucinated variables).

Evaluating 5 state-of-the-art models, we find specialized COBOL models (Legacy Insights, AWS
Transform) achieve 88-92% on the benchmark, while general-purpose models (Claude Sonnet 4, GPT-
40) achieve 86-90%. Models maintain strong performance across complexity tiers (0-9% degradation),
demonstrating that enterprise-scale COBOL is increasingly solvable with specialized approaches.

1 Introduction

1.1 The Legacy Code Crisis

Over 220 billion lines of COBOL remain in production, processing 95% of ATM transactions and 80%
of in-person retail transactions globally [6]. The median age of a COBOL developer is 55+, creating an
urgent need for Al-assisted modernization. Yet modernization projects fail at rates exceeding 60%, costing
enterprises $600B+ annually. The root cause: business logic is poorly understood before conversion.

1.2 Generation vs. Comprehension

Existing code benchmarks test the wrong direction:

HumankEval: Specification — Al — Code
LegacyCodeBench: Code — Al — Documentation

These are inverse operations. HumanEval tests synthesis (creating from specifications). LegacyCodeBench
tests comprehension (extracting meaning from existing artifacts). The asymmetry matters because:

1. Modernization requires understanding first. You cannot rewrite a system you don’t understand.

2. Legacy code lacks documentation. Many COBOL systems have outlived their original authors.

3. Comprehension errors are dangerous. Misunderstanding business logic during modernization
causes critical failures in banking, insurance, and government systems.

1.3 The Circular Validation Problem

How do you evaluate if Al “understands” code? Prior approaches have critical flaws:
LLM-as-Judge (e.g., MT-Bench [7]):

AI generates docs -> Another LLM rates quality

Problem: Non-reproducible. Different LLM versions yield different scores. Model drift invalidates historical
comparisons.
LLM Code Regeneration:

ATI-A writes docs -> AI-B regemnerates code -> Execute -> Compare

Problem: Circular validation. You're testing whether LLM-B can understand LLM-A, not whether the
documentation accurately describes the original code.

1.4 Owur Approach: Claim-Based Behavioral Verification
We propose a fundamentally different methodology:

AT writes docs -> Extract claims (regex) -> Execute ORIGINAL -> Verify claims

The key insight: the original program is the oracle. If documentation claims “PREMIUM is cal-
culated by multiplying BASE-RATE by RISK-FACTOR,” we verify this by executing the original COBOL
with known inputs and checking the output. No second LLM is needed for interpretation.

This parallels SWE-bench [4], where test suites validate patches—not LLM opinions.

1.5 Contributions

1. LegacyCodeBench: The first execution-based benchmark for AI comprehension of legacy COBOL
systems, comprising 200 real-world programs across 4 complexity tiers.

2. Claim-Based Behavioral Verification: A novel evaluation methodology that avoids circular vali-
dation by verifying documentation claims against original program execution.

3. Deterministic Evaluation Framework: A fully reproducible system (100% deterministic) with
minimal LLM usage (capped at 15% score impact), addressing the reproducibility crisis in LLM eval-
uation.

4. Anti-Gaming Mechanisms: Novel techniques including the Silence Penalty (penalizing vague doc-
umentation) and Critical Failure detection (hard stops for dangerous errors).

5. Empirical Findings: Comprehensive evaluation of 5 models reveals specialized COBOL models
(Legacy Insights, AWS Transform) achieve 88-92%, outperforming general-purpose models, with min-
imal degradation (0-9%) across complexity tiers.

2 Related Work

Code Generation Benchmarks. HumanEval [3] and MBPP [1] measure pass@k on self-contained func-
tions. SWE-bench [4] evaluates patch generation given issue descriptions. These test generation, not under-
standing of undocumented systems.

Code Understanding. CodeXGLUE [5] includes summarization but uses BLEU without execution.
No benchmark addresses legacy mainframe code where documentation doesn’t exist and business rules are
implicit in 40-year-old logic.

Table 1: Benchmark comparison. LegacyCodeBench is the first to combine execution-based evaluation with
legacy code comprehension.

Benchmark Task Language Size Evaluation Legacy
HumanEval [3] Generation Python 164 Pass@k No
MBPP [1] Generation Python 974 Pass@k No
SWE-bench [4] Bug fixing Python 2,294 Test suite No
BigCodeBench [2] Generation Python 1,140 Execution No

LegacyCodeBench Comprehension COBOL 200 Execution Yes

3 The LegacyCodeBench Benchmark

3.1 Task Definition

Input: COBOL source code (300-5000 lines) 4+ copybooks
Output: Comprehensive documentation covering:

e Business purpose and context

Input/output specifications

e Business rules and calculations

Control flow and decision logic

External dependencies (SQL, CICS, CALL)

Error handling

3.2 Dataset Construction

We curated 200 COBOL programs from 8 public repositories spanning banking, insurance, and government
domains.

Table 2: Dataset sources and distribution.

Source Programs Domain

AWS CardDemo 45 Credit card processing
Rocket BankDemo 38 Core banking
Microfocus BankDemo 35 Retail banking
IBM COBOL Samples 32 Mixed enterprise
Azure Legacy 25 Government systems
Other 25 Mixed

3.3 Complexity Tiers

Programs are classified into 4 tiers using automated metrics:

ITier assignment uses multi-factor complexity scoring beyond LOC, including CICS/DB2 integration, cyclomatic complexity,
and GO TO density. Some T4 programs may have fewer than 2000 LOC but exhibit enterprise-grade complexity due to external
system integrations.

Table 3: Complexity tier deﬁnitionsE]

Tier LOC Characteristics Count
T1 300-500 Linear flow, simple calculations 50
T2 500-1000 PERFORM loops, REDEFINES, conditionals 41
T3 1000-2000 External CALLs, nested structures 50
T4 2000-5000 CICS/DB2, GO TO spaghetti, complex I1/0 59

3.4 Ground Truth Generation

Ground truth is extracted via static analysis (95% automated):

e COBOL Parser: Extracts all four divisions

e Data Structure Extractor: Maps 01-level records, REDEFINES, 88-levels
e Control Flow Analyzer: Traces PERFORM chains, GO TO targets

¢ Business Rule Detector: Identifies COMPUTE, IF/EVALUATE patterns
e Dependency Analyzer: Finds CALL, EXEC SQL, EXEC CICS

Each ground truth element has a confidence score (>80% for scored elements).

4 Evaluation Methodology

4.1 Three-Track Scoring
LCB Score = 0.30 x SC + 0.20 x DQ + 0.50 x BF (1)

Table 4: Track weights and rationale.

Track Weight Rationale

Structural Completeness (SC) 30% Coverage is necessary but not sufficient

Documentation Quality (DQ) 20% Quality matters but less than correct-
ness

Behavioral Fidelity (BF) 50% Execution verification is most objective

4.2 Track 1: Structural Completeness (30%)

Measures coverage of ground truth elements using TF-IDF similarity with frozen vectorizer:

SC = 0.40 x BusinessRules + 0.25 x DataStructures 4+ 0.20 x ControlFlow + 0.15 x ExternalCalls (2)
Why TF-IDF over Neural Embeddings:

e Deterministic (same vectorizer = same results)

e Version-locked (frozen pickle, no API drift)

e Sufficient for element matching

We apply COBOL synonym expansion (50+ frozen synonyms) to handle terminology variations.

4.3 Track 2: Documentation Quality (20%)
Fully algorithmic metrics (no LLM):

e Structure (30%): Required sections present

e Traceability (30%): Line citations valid against source

e Readability (20%): Flesch-Kincaid grade 8-12

e Abstraction (20%): WHY-words / (WHY + WHAT words)

4.4 Track 3: Behavioral Fidelity (50%)

Our key innovation: verify documentation accuracy via execution.

4.4.1 Claim Extraction

Extract behavioral claims using regex patterns:

Table 5: Claim extraction patterns.

Type Example Pattern

Calculation “X is calculated by multiplying Y by Z”
Conditional “When X exceeds Y, Z is set to W”
Assignment “The result is stored in X”

Range “X must be between Y and Z”

LLM Fallback: If regex extracts <3 claims, use structured LLM extraction (temperature=0, capped at
15% score impact, logged in audit trail).

4.4.2 Claim Verification

Algorithm 1 Claim Verification
1: for each claim in extracted_claims do

2: inputs < generate_test_inputs(claim, ground_truth)
3: result + execute_cobol(source_code, inputs)

4: if claim_matches_output(claim, result) then

5: verified < verified + 1

6: end if

7: end for

8: return verified / total_claims

Execution uses Docker with GnuCOBOL 3.2, timeout 30 seconds.

4.4.3 BSM: Behavioral Specification Matching

For EXEC SQL, EXEC CICS, and CALL statements that cannot be executed without mainframe infras-
tructure, we use 16 deterministic patterns across 4 categories:

e SQL (6): SELECT, INSERT, UPDATE, DELETE, CURSOR_OPEN, CURSOR_FETCH
e CICS (5): READ, WRITE, REWRITE, SEND_MAP, RECEIVE_MAP

e CALL (2): Static, Dynamic

e File (3): READ, WRITE, REWRITE

4.5 Anti-Gaming: The Silence Penalty

Problem: Al could write vague documentation with no testable claims.
Solution: If documentation yields <1 extractable behavioral claim:

Behavioral Fidelity = 0 (3)

This forces models to make specific, verifiable statements. Vague documentation receives 0 on the 50%-

weighted BF track.

4.6 Critical Failure Detection

Certain errors are so severe that partial credit is inappropriate:

Table 6: Critical failures trigger task score = 0.

CF

Trigger

CF-01
CF-02

CF-03
CF-04
CF-05

0% of CRITICAL business rules documented

ANY hallucinated I/O variable (doesn’t exist in
source)

>50% of claims fail execution verification

Error handlers exist but undocumented

>70% BSM pattern failures

Rationale: Documentation that hallucinates variables or misses core logic is worse than no documentation—
it actively misleads modernization teams.

4.7 Pass Criteria
A task passes if:

e SC > 60%
e DQ > 50%
e BF > 55%

e No Critical Failures

5 Reproducibility Design

5.1 Determinism Guarantee

Every evaluation component is deterministic:

Component Versioning
Tasks Git commit hash
Ground truth Semantic version + SHA-256

TF-IDF vectorizer Frozen pickle + hash
COBOL synonyms Frozen dictionary
Docker image Image digest

5.2 LLM Usage Policy

¢ REQUIRED: Model under evaluation generates documentation

e CONDITIONAL: Claim extraction fallback (if regex <3 claims)

e FORBIDDEN: LLM-as-judge, LLM code regeneration

LLM fallback is temperature=0, capped at 15% score impact, and logged.

6 Experiments

6.1 Models Evaluated

Model Provider Context Date

Legacy Insights Hexaview 128K Jan 2026
Claude Sonnet 4 Anthropic 200K Jan 2026
AWS Transform (Mainframe) AWS 128K Jan 2026
IBM Granite 13B IBM 128K Jan 2026
GPT-40 OpenAl 128K Jan 2026

6.2 Main Results

Table 7: Model performance on LegacyCodeBench.

Model LCB Score SC DQ BF Pass Rate
Legacy Insights 92% 94% 96% 90% 96%
Claude Sonnet 4 90% 96% 8% 91% 90%
AWS Transform 88% 98% 68% 91% 88%
IBM Granite 13B 87% 93% 2% 90% 87%
GPT-40 86% 92% 7% 89% 86%

Legacy Insights leads overall (92%) with best documentation quality (96%). Claude Sonnet 4 achieves
highest structural completeness (96%) and behavioral fidelity (91%). Specialized COBOL models (Legacy
Insights, AWS Transform) significantly outperform general-purpose models, demonstrating that domain

specialization drives performance on legacy code comprehension.

6.3 The Complexity Wall

Table 8: Performance by complexity tier. All models maintain strong performance with minimal degradation

(0-9%) from T1 to T4.

Model T4
Legacy Insights 9%6% 90%
Claude Sonnet 4 92% 92%
AWS Transform 8% 8%
IBM Granite 13B 89% 84%
GPT-40 91% 82%

Key Finding: All models maintain strong performance across complexity tiers. Legacy Insights and
Claude Sonnet 4 show virtually no degradation on T4 enterprise code (6% and 0% drops respectively),
while GPT-40 shows the largest degradation (9%). Specialized COBOL models demonstrate robustness to
enterprise complexity.

6.4 Critical Failure Analysis

Note: Critical failure analysis for the updated model set is not included as the evaluation methodology was
refined in this benchmark iteration. Future work will report detailed failure mode analysis across all models.

7 Discussion

7.1 Why Execution-Based Verification Works
Our methodology parallels SWE-bench:

SWE-bench LegacyCodeBench

Real GitHub issues Real COBOL programs

Unit tests validate patches FExecution validates claims
Deterministic pass/fail Deterministic scoring

No LLM in evaluation LLM only for extraction fallback

Both use program execution as ground truth, avoiding the reproducibility issues of LLM-as-judge.

7.2 The Circular Validation Problem (Solved)

Prior approaches tested whether LLM-B can understand LLM-A’s output. Our approach tests whether
documentation accurately describes the original program. The original code is the oracle—mno second LLM
interpretation is needed.

7.3 HumanEval vs LegacyCodeBench

HumanEval is a scalpel—minimal, precise, elegant (~350 lines). LegacyCodeBench is a surgical suite—
comprehensive, specialized, battle-hardened against gaming (~24,000 lines).

The complexity difference reflects the task difference: generating 20 lines of Python requires less machin-
ery than validating that an Al correctly understood 2000 lines of COBOL.

7.4 Limitations

Task Count: 200 tasks (59 at T4) limits statistical power but better reflects enterprise distribution.
CICS/DB2 Execution: Programs requiring mainframe runtimes use BSM pattern matching, not actual
execution.
Claim Extraction: Regex patterns may miss valid claims phrased unusually.
No Human Baseline: We lack expert human performance data.

7.5 Future Work
1. Human Baseline: Evaluate 5+ COBOL experts on 20 tasks

2. Contamination Analysis: Synthetic COBOL to verify no training overlap
3. Cross-Language: Apply methodology to Fortran, PL/I, legacy C

4. Ablation Studies: Impact of silence penalty, LLM fallback cap

8 Conclusion

LegacyCodeBench establishes the first execution-based benchmark for evaluating AI comprehension of legacy
COBOL systems. Our evaluation of 5 models reveals that specialized COBOL models achieve 88-92% on
the benchmark, demonstrating that enterprise legacy code is increasingly solvable with domain-specialized
approaches.

Key innovations:

1. Execution-based documentation evaluation via claim extraction
2. 16 deterministic BSM patterns for external call validation

3. Anti-gaming mechanisms (silence penalty, critical failures)

4. 100% deterministic evaluation with minimal LLM usage

Specialized models (Legacy Insights, AWS Transform) significantly outperform general-purpose models
on COBOL comprehension. Future work should focus on contamination analysis, human baseline studies,
and cross-language application of the methodology.

Code and Reproducibility

LegacyCodeBench is available at https://github.com/kalmantic/legacycodebench.

pip install legacycodebench
legacycodebench run-full-benchmark --model gpt-4o
legacycodebench verify-reproducibility --rumns 3

References

[1] J. Austin et al. Program synthesis with large language models. arXiv:2108.07732, 2021.

[2] T. Zhuo et al. BigCodeBench: Benchmarking code generation with diverse function -calls.
arXiv:2406.15877, 2024.

[3] M. Chen et al. Evaluating large language models trained on code. arXiv:2107.03374, 2021.
[4] C. Jimenez et al. SWE-bench: Can language models resolve real-world GitHub issues? ICLR, 2024.

[5] S. Lu et al. CodeXGLUE: A benchmark for code understanding and generation. NeurIPS Datasets and
Benchmarks, 2021.

[6] Reuters. The world depends on 60-year-old code no one knows anymore. Reuters Technology, 2017.

[7] L. Zheng et al. Judging LLM-as-a-Judge with MT-Bench and Chatbot Arena. NeurIPS, 2023.

https://github.com/kalmantic/legacycodebench

	Introduction
	The Legacy Code Crisis
	Generation vs. Comprehension
	The Circular Validation Problem
	Our Approach: Claim-Based Behavioral Verification
	Contributions

	Related Work
	The LegacyCodeBench Benchmark
	Task Definition
	Dataset Construction
	Complexity Tiers
	Ground Truth Generation

	Evaluation Methodology
	Three-Track Scoring
	Track 1: Structural Completeness (30%)
	Track 2: Documentation Quality (20%)
	Track 3: Behavioral Fidelity (50%)
	Claim Extraction
	Claim Verification
	BSM: Behavioral Specification Matching

	Anti-Gaming: The Silence Penalty
	Critical Failure Detection
	Pass Criteria

	Reproducibility Design
	Determinism Guarantee
	LLM Usage Policy

	Experiments
	Models Evaluated
	Main Results
	The Complexity Wall
	Critical Failure Analysis

	Discussion
	Why Execution-Based Verification Works
	The Circular Validation Problem (Solved)
	HumanEval vs LegacyCodeBench
	Limitations
	Future Work

	Conclusion

